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How graphene, an atomically thin two-dimensional crystal, explores the third spatial dimension by buckling
under compression is not yet understood. Knowledge of graphene’s buckling strength, the load at which it
transforms from planar to buckled form, is a key to ensure mechanical stability of graphene-based nanoelec-
tronic and nanocomposite devices. Here, we establish using first-principles theoretical analysis that graphene
has an intrinsic rigidity against buckling, and it manifests in a weakly linear component in the dispersion of
graphene’s flexural acoustic mode, which is believed to be quadratic. Contrary to the expectation from the
elastic plate theory, we predict within continuum analysis that a graphene monolayer of macroscopic size
buckles at a nonzero critical compressive strain at T=0 K, and demonstrate it numerically from first principles.
The origin of this rigidity is traced to the coupling between structural and electronic degrees of freedom arising
from curvature-induced overlap between � orbitals in graphene.

DOI: 10.1103/PhysRevB.82.115411 PACS number�s�: 61.48.Gh

I. INTRODUCTION

Graphene, a crystalline membrane marked by spectacular
electronic properties and high structural strength,1,2 is a very
promising candidate for applications in nanoelectronics and
nanocomposites.3,4 However, such applications require deep
understanding of graphene’s structural response to external
stresses, to thermal fluctuations and interaction with the sub-
strate. Experimental and theoretical studies have demon-
strated emergence of fracture instability in graphene under
uniaxial tension.1,5 The intrinsic strength of graphene against
fracture, as reported in these studies, is highest among all
materials. Bao et al. recently demonstrated how strain-
induced ripples in graphene can be controlled via thermome-
chanical manipulation to allow device design based on strain
engineering.6 Underscored in their work is the need to de-
velop a clear understanding of rippling in graphene under
compression.

Stability of graphene as a strictly two-dimensional crys-
talline membrane has been a subject of theoretical debate in
view of the Mermin-Wagner theorem, which argues for the
lack of long-range order such as crystallinity in two dimen-
sions at nonzero temperature in the absence of long-range
interactions.7 On the other hand, experimental isolation of
free-standing graphene has demonstrated the existence of
quasilong-range translational order in graphene at finite
temperature.8 Monte Carlo simulations based on highly ac-
curate many-body interatomic potential showed that the to-
pographical corrugations �ripples� arising from anharmonic
coupling between long-wavelength stretching and bending
modes stabilize the monolayer graphene against thermal
fluctuations by deforming mesoscopically in the third
dimension.9

Buckling of thin elastic membranes in response to com-
pression results in structural modulations similar to ripples
induced by thermal fluctuations.10,11 Buckling of an elastic
membrane is illustrative of generic bifurcation phenomenon
where the membrane, when compressed beyond a certain
critical strain, explores an energetically preferred state by
collapsing in out-of-plane direction. The stretching energy in
an elastic membrane is dictated by two-dimensional stretch-

ing modulus � Yh
2�1−�2� � and scales as Es� Yhl2

2�1−�2� whereas the
bending energy, which is dictated by bending stiffness, scales
as Eb� Yh3

12�1−�2� where Y is Young’s modulus, � is Poisson
ratio, h is thickness, and l is typical length of the
membrane.12,13 The ratio Eb /Es��h / l�2 determines the rela-
tive ease of bending over stretching, and hence dictates the
critical strain at which emergence of buckling in a membrane
occurs.14 From elasticity theory of plates, we expect that a
membrane has a vanishing critical strain in macroscopic
limit, i.e., when its in-plane dimensions are much larger than
the thickness �h / l→0�.

In contrast to typical crystalline membranes, we demon-
strate here that graphene exhibits a nonvanishing resistance
against buckling in the macroscopic limit �l→��, and it is an
intrinsic property of graphene. This intrinsic strength of
graphene against buckling is attributed to a nonvanishing
out-of-plane shear rigidity which has a signature in the dis-
persion of its flexural acoustic phonons. Using a combination
of first-principles calculations and continuum analysis, we
elucidate how nonvanishing shear rigidity nontrivially alters
the elastic stability of a thin membrane against buckling
when compressed uniaxially.

II. COMPUTATIONAL DETAILS

Our calculations are based on first-principles density
functional theory as implemented in the PWSCF simulation
package,15 with a generalized gradient approximation16 to
exchange correlation energy of electrons and ultrasoft
pseudopotential17 to represent interaction between ionic
cores and valence electrons. Kohn-Sham wave functions
were represented with a plane-wave basis with an energy
cutoff of 35 Ry and a charge density with a cutoff 210 Ry.
Integration over irreducible Brillouin zone for charge density
and total energy was performed with a uniform mesh of
42�42�1 mesh of k points and occupation numbers were
smeared using Methfessel-Paxton scheme18 with broadening
of 0.01 Ry. Errors in the stresses and total energy due to
basis-set size, smearing parameter, and k points are con-
verged to less than 0.1 GPa and 0.01 Ry, respectively.
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III. RESULTS AND DISCUSSION

Oscillations of graphene with out-of-plane displacements
of C atoms lead to two branches of phonons �one acoustic
flexural and another optical�. The acoustic flexural mode, due
to translational and rotational symmetry of graphene, is be-
lieved to disperse as �flexural�q��q2 as q→0.19 However, our
lattice dynamics calculations based on linear-response theory
demonstrate that acoustic flexural mode of graphene under
uniaxial compressive strain, in the limit q→0, has a behav-
ior �=k1����q�+k2����q�2 with k1��=0��0, q being the wave
vector, and � the applied strain �see Fig. 1�. We have estab-
lished that flexural phonon frequencies of unstrained
graphene ��=0�, particularly the coefficient of linear term,
i.e., k1, are converged with respect to k-point sampling with
integration mesh finer than 36�36�1 �see the Appendix�.

Nonvanishing k1��� at �=0 is indicative of nonzero shear
modulus and hence a nonzero velocity of sound waves with
out-of-plane polarization. Falkvosky recently obtained the
dispersion of z-polarized acoustic phonon in graphene ana-
lytically using empirical interatomic force constants and re-
ported a nonvanishing sound velocity in out-of-plane
direction.20 Sound velocities obtained from the two acoustic
branches in longitudinal and transverse in-plane directions
are in excellent agreement with values obtained from the
experiments �see Table I�. For the out-of-plane polarization,
our estimate of sound velocity is 1.05 km/s as compared to
1.58 km/s reported by Falkovsky.20

Presence of a linear term in the transverse acoustic branch
of a strictly two-dimensional membrane is believed to be
prohibited since it violates the rotational invariance.19 How-
ever, we show that a modification of continuum Hamiltonian
is possible with an additional term to allow a linear compo-
nent in the dispersion of z-polarized acoustic phonon without
loss of rotational invariance. Graphene, in continuum limit,
is modeled as a thin elastic sheet with bending rigidity �,

in-plane shear modulus 	, and Lame constant 
. The hex-
agonal symmetry of graphene lattice ensures the isotropy of
its elastic properties and thus justifies the isotropic shell
model. Deformed configuration of a membrane is described
with two in-plane displacement fields u1 and u2, and a trans-
verse displacement field w, which depend on the coordinate
r= �x ,y� of a planar reference state. Incorporating inputs
from first-principles lattice dynamics and energetics into
continuum analysis, we determine the form of the continuum
Hamiltonian consistent with atomistics,

H =� �
�
��

2
��2w�x,y��2 + 	 	

�,=1

2

��
2 +




2

	

�=1

2

����2

−
	�

2
w�x,y��2w�x,y��dxdy , �1�

where the strain tensor ��� is given as14

�� =
1

2
� �u�

�x

+
�u

�x�

+
�w�x,y�

�x�

�w�x,y�
�x

� . �2�

We notice that H is invariant under rigid body rotation
and translation due to symmetry properties of �2 and ���.
Our first-principles estimates of 
 and 	 are in excellent
agreement with previous theoretical and experimental values
�see Table II�. � and 	� are determined from the first-
principles estimate of energy cost associated with an out-of-
plane sinusoidal deformation of graphene �w�x�
=� sin� 2�x

l �� with respect to planar reference configuration
of a 4n-atom supercell, l being the length of the supercell
and � being the amplitude of deformation wave. For this
deformation and a uniaxial compression �, continuum
Hamiltonian assumes the form,
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FIG. 1. �Color online� Left: dependence of
�flexural on q in the vicinity of q=0. Dots denote
the data from first-principles lattice dynamics
whereas the red/gray and black curves are
second-order polynomial fits with and without the
linear term, respectively. Excellent fitting in the
presence of linear term should be noticed. Disper-
sion of phonons in unstrained graphene has been
shown in inset. Right: effective rigidity of
graphene, calculated from first-principles energet-
ics, as a function of wave number 2�

l , indicating a
nonzero out-of-plane rigidity in accordance with
lattice dynamics calculations.

TABLE I. First-principles estimates of sound velocities com-
pared with experimental estimates �T�300 K� �Refs. 21 and 22�.

vLA

�km/s�
vTA

�km/s�
vZA

�km/s�

Present 22.1 14.2 1.05

Experiments 24 14

TABLE II. Mechanical properties of graphene calculated �first-
principles� and earlier estimations �Refs. 1, 21, and 23�.

Y
�eV /Å2�

	
�eV /Å2� �



�eV /Å2�

Our estimations 20.2 8.8 0.16 3.0

Earlier estimations 21.20 9.1 0.14 2.0
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H =
�3l2�
 + 2	�

2n
�2 +

�3�2

n
�
2�

l
�2

� + 	� − �
 + 2	����2

+
3�3�4�
 + 2	�

4nl2 �4. �3�

The buckling instability, in this continuum model, occurs
when 4�2

l2 �+	�− �
+2	���0. From this inequality, we no-

tice that 4�2

l2 �+	� is the effective rigidity against strain-
induced buckling of a graphene sheet of length l. The con-
tribution due to bending stiffness ��� to effective rigidity
diminishes as l−2, and only 	� contributes to the stability of
a macroscopic graphene sheet. We consider four supercells
comprising of 20, 24, 32, and 40 atoms with sinusoidal out-
of-plane deformation and calculate their effective rigidities
from first principles. From these values, we obtain the values
of � and 	� as 1.03 eV and 0.091 eV /Å2, respectively �see
Fig. 1�. Retaining only the harmonic terms in Fourier analy-
sis of the continuum Hamiltonian �1�, we obtain the disper-
sion of flexural acoustic mode as

H�q� �
1

2
m�q

2wq
2 =

1

2
�q4 + �	� − �
 + 2	���q2�wq

2. �4�

Thus, we notice that a linear component in the dispersion of
acoustic flexural phonons in unstrained graphene, i.e., �=0
arises from a nonvanishing 	�. Comparison of expression
�5� with the first-principles lattice dynamics calculations pro-
vides us another way to independently deduce values of �
and 	�. � and 	� obtained from dispersion of acoustic flex-
ural mode are 1.02 eV and 0.11 eV /Å2, respectively, close
to our earlier estimates. With these values of �, 	, 
, and 	�,
buckling of graphene for n=6 �24-atom supercell� is pre-
dicted to occur at the critical strain of −1.35%.

To validate this prediction of buckling transition from the
continuum model, we carried out further first-principles
total-energy calculations with a 24-atom supercell �l
=14.84 Å� with out-of-plane sinusoidal deformation of dif-
ferent amplitudes. For small amplitude perturbations, the to-
tal energy of the perturbed structure varies as E=EFlat
+C2����2+C4����4, where the coefficients C2 and C4 are
functions of applied in-plane strain �. Stability of the struc-
ture with respect to out-of-plane perturbations is dictated by

the sign of C2, the coefficient of �2. C2 is observed to vary
linearly with � as expected from continuum theory, and be-
comes negative as graphene is compressed beyond a certain
value indicating transition from planar to buckled state �see
Fig. 2�. This transition occurs at critical value of compressive
strain of �crit�−1.5% against �crit=−� 4�2

l2 �+	�� / �
+2	�
�−1.35% as predicted by continuum analysis. In the macro-
scopic limit, i.e., l→�, buckling occurs at a critical strain of
�crit=−	� / �
+2	��−0.5%. Lattice dynamics calculations
carried out at increasing compressive strains indicate occur-
rence of long-wavelength instability between �=−0.5% and
−0.75% �Fig. 3�, corroborating the predictions of continuum
theory.

The intrinsic buckling strength of graphene can be under-
stood as arising from the stiffening action of the unhybrid-
ized � orbitals orienting normal to the plane of graphene.
Our calculations verify that the Dirac point shifts along �-K
direction from K point with small uniaxial strain and no band
gap opens.25 On out-of-plane deformation, the curvature al-
ters the relative orientation of � orbitals, as shown in Fig. 4,
leading to a change in overlap between neighboring �
orbitals.26 Our analysis for incipient buckling �see the Ap-
pendix� shows that �-� interactions in graphene lead to a
term in the continuum Hamiltonian,
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FIG. 2. �Color online� �a� Total energy �E� as
a function of amplitude ��� calculated from first
principles at various compressive strains. Dimin-
ishing slopes of E vs �2 curves with compression
indicate a buckling transition at �=−1.5%.
Shown in inset is variation in C2, coefficient of
�2, with strain. �b� Stress vs strain and energy vs
strain �inset� curves for graphene indicating the
bifurcation at onset of buckling. Due to Pulay
errors the stress values calculated at different
strains are shifted with respect to their actual val-
ues by a small offset leading to apparent nonzero
stress in undeformed state �Ref. 24�.
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FIG. 3. �a� Phonon spectrum at �=−0.5%. �b� Phonon spectrum
at �=−0.75%. Softening of z-transverse acoustic branch with strain
should be noticed. Imaginary frequencies at �=−0.75 indicate a
transverse structural instability as a result of compression.
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H�-� = −
	�

2
�

A
w�2wdr , �5�

where A indicates area of graphene sheet under consider-
ation. This term vanishes for rigid body rotation of the mem-
brane about any axis, respecting the rotational invariance
�see the Appendix�. Due to H�-�, an out-of-plane deforma-
tion w�r� feels a restoring force �

�H�-�

�w � that is proportional to
local curvature, i.e., �2w �see Fig. 4�. Under the boundary
condition that the edges of the membrane are hinged against
out-of-plane displacements, i.e., w=0 at the edges, we have

H�-� =
	�

2
�

A
��w�2dr . �6�

H�-� can now be identified as strain energy contribution due
to an out-of-plane shear of membrane, and 	� as slope of
flexural acoustic branch.

IV. SUMMARY

We have used a combination of first-principles theoretical
and continuum analyses in exploration of buckling transition
of graphene with uniaxial compressive in-plane strain. Con-
trary to the prediction of elastic plate theory, we predict that
buckling of macroscopic graphene occurs at a nonzero com-
pressive strain. This intrinsic buckling strength arises from
curvature induced mixing among its � orbitals. Our first-
principles continuum theory should be greatly useful in en-
suring mechanical stability in design of graphene-based na-
noelectronic devices and nanocomposites.
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APPENDIX

1. Derivation of H�-�=−
��

2 �Aw�2wdr

Here we show that the additional H�-� term in the con-
tinuum Hamiltonian arises due to curvature-induced �-� in-
teraction. Let us consider an initially flat sheet of graphene in
which all the � orbitals are oriented in the same direction
�shown in Fig. 4�a��. Pulling out a carbon atom in out-of-
plane direction results in a local curvature and hence in a
misalignment of neighboring � orbitals from unidirectional
configuration �shown in Fig. 4�b��. To obtain the mathemati-
cal form for curvature-induced �-� interaction, � orbitals
are modeled as negatively charged skew rods in space. Elec-
trostatic interaction between two charged skew rods, indexed
as i and j, is described by a separable function of interaxial
distance rij =�r0

2+ �wj −wi�2 �r0 is interaxial distance in flat
state and wj −wi is relative vertical displacement� and angle
of misalignment �ij.

27,28 The angle of misalignment between
two skew lines is defined as the angle between any two lines
parallel to them and passing through a point of space. Energy
of curvature-induced �-� interaction can be generically writ-
ten as

E�-� = F��r0
2 + �wj − wi�2�G��ij� − F0G0 �A1�

with F0=F�r=r0� and G0=G��ij =0� so that the energy in the
undeformed configuration is zero.

Energy due to interaction of ith � orbital with its neigh-
boring � orbitals �considering only nearest-neighbor interac-
tions� is

Hi = 	
j=1

j=3

E�-� = 	
j=1

j=3

F��r0
2 + �wj − wi�2�G��ij� − F0G0.

�A2�

Next we write Taylor-series expansions for the functions F
and G in terms of their respective arguments. For incipient
buckling, we can assume that w as well as �w is small.
Therefore, in what follows, we retain only terms upto second
power of �w. Further, it also should be noted that the higher-
order derivative terms are higher order in q, and the con-
tinuum limit corresponds to q→0. Thus higher-order terms,
i.e., �nw�n�2� can be justifiably neglected,

F�r� = F0 + 
 �F
�r

�
r0

��r0
2 + �wj − wi�2 − r0�

= F0 +
1

2r0

 �F

�r
�

r0

�wj − wi�2. �A3�

Substituting

wj − wi = 
 �w

�x
�

i

�xj − xi� + 
 �w

�y
�

i

�yj − yi� , �A4�

FIG. 4. �Color online� The force felt by a carbon atom pulled
out of planar structure �shown in �a�� is proportional to the local
curvature ��2w�r��, that arises from the curvature-induced overlap-
ping between � orbitals in graphene �shown in �b��. The arrows
indicate the relative tilting of � orbitals as graphene is deformed in
out of plane direction.
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F�r� = F0 +
1

2r0

 �F

�r
�

r0


 �w

�x
�

i

2

�xj − xi�2

+
1

2r0

 �F

�r
�

r0


 �w

�y
�

i

2

�yj − yi�2

+
1

r0

 �F

�r
�

r0


 �w

�x
�

i

 �w

�y
�

i

�xj − xi��yj − yi� .

�A5�

Further terms in the Taylor expansion would contain powers
of �w

�x and �w
�y higher than 2 and therefore have been ne-

glected.
Substituting � �F

�r �r0
=0 in Eq. �A5� we obtain

F��r0
2 + �wj − wi�2� � F0. �A6�

Thus, F remains unchanged to second-order variation in �w.
Next let us consider the Taylor expansion of angular depen-
dence part, i.e., G��ij� of deformation potential,

G��ij� = G0 + 
 �G
��ij

�
�ij=0

�ij +
1

2

 �2G

��ij
2 �

�ij=0

�ij
2 . �A7�

For small deviation from reference flat state ��ij =0�, the an-
gular function G��ij� should vary quadratically with �ij, i.e.,
G��ij

2 . Therefore,


 �G
��ij

�
�ij=0

= 0. �A8�

Thus

G��ij� = G0 +
1

2

 �2G

��ij
2 �

�ij=0

�ij
2 . �A9�

This is assumed in what follows that the magnitude of mis-
alignment ��ij� is determined by magnitude of local gradient,
i.e., ��ij����wi�. Substitution in Eq. �A9� yields,

G��ij� = G0 +
1

2

 �2G

��ij
2 �

�ij=0

��wi�2. �A10�

Substitution from Eqs. �A6� and �A9� in Eq. �A2� gives

Hi =
3

2
F0
 �2G

��ij
2 �

�ij=0

��wi�2. �A11�

Let S0 be the area per atom in the planar configuration while
Si be the projection of area per atom in deformed configura-
tion on x-y plane. Then we can write total energy due to �-�
interactions as

H�-� = 	
i

1

S0
HiSi, �A12�

=	
i

3

2

1

S0
F0
 �2G

��ij
2 �

�ij=0

��wi�2Si. �A13�

The continuum analog of which is

H�-� = �
A

	�

2
dS��w�2 �A14�

with
	�

2 = 1
S0

3
2F0� �2G

��ij
2 ��ij=0.

Under the boundary condition that the edges of the mem-
brane are hinged against out of plane displacements, i.e., w
=0 at the edges, Eq. �A14� becomes

H�-� = −
	�

2
�

A
drw�2w . �A15�

2. Invariance of H�-� under symmetry operations

a. Translational Invariance

Out-of-plane displacement w is always measured relative
to a flat reference configuration. Hence an overall rigid body
translation of the sheet leaves the out-of-displacement field
unchanged, and no alteration in H�-� occurs. This straight-
forward leads to translational invariance.

b. Rotational Invariance

For a planar sheet, out-of-plane displacement field identi-
cally vanishes, i.e., w�0 and hence �2w�0. We now show
that a rigid body rotation of the graphene sheet about x or y
axis does not cost any energy due to presence of
−	� /2�w�2w� term. Let us rotate the sheet about y axis by
an arbitrary nonzero angle �. Such a rotation results in a
nonvanishing out-of-plane displacement field, i.e., w
=x sin �, �w= �sin � ,0�. However, we notice that a flat sheet
remains flat under such a transformation, and hence we still
have �2w=0. Thus we still have −	� /2�w�2w�=0 implying
that a rigid body rotation about an in-plane axis does not cost
any energy. Even by integrating by parts, we arrive at the
same conclusion as we show following:

�
a

b

w
�2w

�x2 dx = w� �w

�x
�

a

b

− �
a

b 
 �w

�x
�2

dx . �A16�

Substituting w=x sin � and �w
�x =sin �,

w� �w

�x
�

a

b

= �b − a�sin2 � �A17�

and

�
a

b 
 �w

�x
�2

dx = �b − a�sin2 � . �A18�

Thus,

�
a

b

w
�2w

�x2 dx = 0. �A19�

Thus Hamiltonian remains invariant under rigid body rota-
tion.

c. Reflection Invariance

Under reflection
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w → − w and �2w → − �2w .

Therefore

�− w��− �2w� → w�2w �A20�

Thus the invariance under reflection is maintained.

3. Force-displacement interpretation of H�-�

To understand the origin H�-� from the force-
displacement interpretation, we carry out the functional dif-
ferentiation of H�-� with respect to w�x ,y� to obtain the
effective force,

F = −
�H�-��w�x,y��

�w�x�,y��
= − lim

�→0

H�-��w�x,y� + ���x − x�,y − y��� − H�-��w�x,y��
�

�A21�

=�
A

	�

2
�2w�x,y���x − x�,y − y��dr + �

A

	�

2
�2��x − x�,y − y��w�x,y�dr

+ lim
�→0

��
A

	�

2
��x − x�,y − y���2��x − x�,y − y��dr

=�
A

	�

2
�2w�x,y���x − x�,y − y��dr + �

A

	�

2
�2��x − x�,y − y��w�x,y�dr . �A22�

Using the property of Dirac delta function, first term in the
sum can be reduced as

�
A

	�

2
�2w�x,y���x − x�,y − y��dr =

	�

2
�2w�x�,y�� .

�A23�

Using integration by parts, we obtain reduction for second
term as

�
A

	�

2
�2��x − x�,y − y��w�x,y�dr =

	�

2
�2w�x�,y�� .

�A24�

Hence, we obtain force as

F = 	��2w�x�,y�� .

Thus, we deduce that due to H�-�, an out-of-plane deforma-
tion w�r� feels a restoring force �−

�H�−��w�x,y��
�w�x�,y��

� that is propor-
tional to local curvature, i.e., �2w.

4. Convergence of phonon frequencies with number of k
points in the integration mesh

The convergence of phonon frequencies with number of k
points in the integration mesh has been estimated. Our cal-
culations indicate that phonon frequencies converge quite
rapidly with number of k points in the integration mesh and
there is almost no change in phonon dispersion curves for
integration mesh finer than 36�36�1 �see Fig. 5 �left��.
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FIG. 5. �Color online� Left: convergence of phonon dispersion with the integration mesh. Notice that no change in phonon dispersion
curves is noticed for integration mesh finer than 36�36�1. Right: convergence of coefficient of linear term ��� with number of k points in
the integration mesh �N�N�1�.
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The acoustic phonons corresponding to each of these integra-
tion mesh is fitted to a polynomial of the type �q+q2 and
the coefficient of linear term, i.e., � is plotted with N �cor-
responding to a N�N�1 integration mesh� �see Fig. 5

�right��. The convergence of � with N to a nonzero value
establishes genuine presence of linear term in the acoustic
phonon of graphene and hence indicates nonvanishing buck-
ling strength of graphene.
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